TETRYONICS

The equilateral geometry underpinning the mathematics of Physics

Foundational physics Mathematics

Geometry and the Theory of Everything

Plato

(c. $428-348 \mathrm{BC}$) DIFFERENT TYPE OF GEOMETRIES

Zero Curvature Euclidian geometry

Positive Curvature Elliptic geometry

Negative Curvature Hyperbolicgeometry

(c.330-275 BC, fl. c. 300 BC)

The Socratic tradition was not particularly congenial to mathematics, as may be gathered from Socrates' inability to convince himself that 1 plus 1 equals 2 , but it seems that his student Plato gained an appreciation for mathematics after a series of conversations with his friend Archytas in 388 BC.

One of the things that most caught Plato's imagination was the existence and uniqueness of what are now called the five "Platonic solids".
It's uncertain who first described all five of these shapes - it may have been the early Pythagoreans - but some sources (including Euclid) indicate that Theaetetus (another friend of Plato's) wrote the first complete account of the five regular solids.

Presumably this formed the basis of the constructions of the Platonic solids that constitute the concluding Book XIII of Euclid's Elements.
In any case, Plato was mightily impressed by these five definite shapes that constitute the only perfectly symmetrical arrangements of a set of (non-planar) points in space, and late in life he expounded a complete "theory of everything",
in the treatise called Timaeus, based explicitly on these five solids.
Interestingly, almost 2000 years later, Johannes Kepler was similarly fascinated by these five shapes, and developed his own cosmology from them

Tetractys

The Greek Tetractys is a
triangular figure consisting of ten points arranged in four rows:
one, two, three, and four points in each row, which is the geometrical representation of the fourth triangular number.

As a mystical symbol, it was very important to the secret worship of the Pythagoreans.

Sacred numbers

The Tetractys historically symbolized the four elements
[Earth, Air, Fire, and Water]
and the relationship between Humanity
and the cosmos created by GOD

The single triangle in the first row represents zero-dimensions (a point)
A vector direction in one-dimension can be represented as a line between any two points
The second row represents a Boson (two-dimensions in a plane defined by a rhombus of three triangles)
The whole figure folded represents three-dimensions (a tetrahedron defined by four apex points)
Photons of ElectroMagnetic mass-Energy quanta are represented by two opposing triangles

The tetrad was the name given to the number four -
in Pythagorean philosophy
there were four seasons and four elements, and the number was also associated with planetary motions and music

As a mystical symbol, it was very important to the secret worship of the Pythagoreans.

The Cosmos

The Greek Zodiac

The Greek Elements

It is unique in that it is the only polygon that can be tiled [or divided] and produce only identical geometries and squares numbers

Equilateral Triangles

An equilateral triangle is a triangle in which all three sides are equal

Any six equilateral triangles joined can make a hexagon.

The

tesselation of odd numbered equilateral triangles creates square numbers

That is,

$1+3=4$
$1+3+5=9$
$1+3+5+7=16$
$1+3+5+7+9=25$
$1+3+5+7+9+11=36$
$1+3+5+7+9+11+13=49$
$1+3+5+7+7+9+11+13+15=64$
etc

An equilateral triangle is simply a specific case of a regular polygon with 3 sides

The Pythagorean Theorem

Though attributed to Pythagoras, it is not certain that he was the first person to prove it.
The first clear proof came from Euclid, and it is possible the concept was known 1000 years before Pythoragas by the Babylonians

$a^{2}+b^{2}=c^{2}$

The square of the hypotenuse of a triangle is equal to the sum of the squares of its sides.

Since Greek times squared numbers have incorrectly been identified with square geometries

Equilateral triangles are also squared number geometries

Pythagoras of Samos
In any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle)

about (570-495 BC)

SQUARED numbers are EQUILATERAL geometries

Pythagorean Tetractys

The Pythagorean equation is at the core of much of geometry, its links geometry with algebra,
and is the foundation of trigonometry.
Without it, accurate surveying, mapmaking, and navigation would be impossible,
but its application to the energy-momenta geometries of ElectroMagnetic fields and Matter in motion in Physics is erroneous and must be corrected for science to advance

Energy geometries

Atomic nuclei geometries

Hexagons can be tiled or tessellated in a regular pattern on a flat two-dimensional plane

Hexagons

A regular hexagon can be subdivided into six equilateral triangles

Hexagons are the unique regular polygon such that the distance between the center and each vertex is equal to the length of each side

Six is a highly composite number, the second-smallest composite number, and the first perfect number.

An interesting relationship between circular and hexagonal geometry is that hexagonal patterns often appear spontaneously when natural forces are trying to approximate circles

Hexagonal tessellation is topologically identical to the close packing of circles on a plane

Platonic Solids

 a Tetrahedron

2 tetryons
regular deltahedrons
5 leptons

12 pentagons meet to form

THE HEAVENS

The Pythagoreans knew that there were only five regular convex solids, the tetrahedon, cube, octahedron, icosohedron and dodecahedron and each one could be accurately circumscribed by a sphere.

Plato

(c. $428-348 \mathrm{BC}$)

The philosopher Plato concluded that they must be the fundamental building blocks - the atoms - of nature, and assigned to them what he believed to be

Euclidean geometry

(c. $330-275$ BC, fl. c. 300 BC)

Arguably the most influential Mathematics book ever written is Euclid's'The Elements'

In all, it contains 465 theorems and proofs, described in a clear, logical and elegant style, and using only a compass and a straight edge.

Euclid's Elements - Book 1 - Proposition 1 Method of constructing an Equialteral triangle

Euclid's five general axioms were:

Things which are equal to the same thing are equal to each other.

If equals are added to equals, the wholes (sums) are equal.

If equals are subtracted from equals, the remainders (differences) are equal.

Things that coincide with one another are equal to one another.

The whole is greater than the part

Archimedes

c. $(287 B C-C .212 B C)$

As its definition relates to the circle,

 π is found in many formulae in trigonometry and geometry especially those concerning circles, ellipses, or spheres.It is also found in formulae from other branches of science, such as cosmology, number theory, statistics, fractals, thermodynamics, mechanics, and electromagnetism

Incorrect identification of $\mathrm{Pi}[\mathrm{c} / \mathrm{d}]$ as opposed to Pi radians in Physics has led to the inappropriate association of spherical particles to the physical sciences whereas equilateral triangles \& tetrahedra form its true geometry

The number π is a mathematical constant that is the ratio of a circle's circumference to its diameter.

Proof of the fact that $\mathrm{C}=2 \pi r$ and how Archimedes proved it

Draw any circle.

The Golden Ratio
Two quantities are in the golden ratio (φ) if the ratio of the sum of the quantities to the larger quantity is equal to the ratio of the larger quantity to the smaller one.

The figure to the right illustrates the geometric relationship
[1.61803]

Interior line length $[\mathrm{LM}]$ of the bisector line
 of the bisector line
 of the oris to

 $[\mathrm{AB}]$ or $[\mathrm{CA}]$Golden ratio phi

$$
\hbar=\frac{h}{2 \pi}
$$

Golden ratio in physics

velocity vectors

The height of the triangle [ALM] produced by the bisecting line is $1 / 2$ the height of the height of [ABC]

$a+b$ is to a as a is to b

An intriguing showing of φ in an equilateral triangle was observed by George Odom, a resident of the Hudson River Psychiatric Center, in the early 1980 s

MThe exterior lines [My] and [Lx] are
Phi ratios of the interior line [LM]

Let L and M be the midpoints of the sides $A B$ and $A C$ of an equilateral triangle $A B C$

By measurement and the Intersecting Chords Theorem $M X \cdot M Y=A M \cdot M C$.
which is of the form

$$
(a+b) \cdot b=a \cdot a .
$$

Denoting $\mathrm{a} / \mathrm{b}=\mathrm{x}$, we see that

$$
1+x=x^{2},
$$

George Odom

magnetic Force
VS
electric Force

The Golden Rhombus

Applying the golden ratio (φ) to quantum scale electrodynamic geometry we can quickly determine that the linear momentum and magnetic moment vectors of photons
\& EM waves can also be expressed as a golden ratio
vector velocities VS
magnetic vector

photons
EM energy

Equilateral Fifths

Ternary Diagrams

Viviani's Theorem implies that lines parallel to the sides of an equilateral triangle provide (homogeneous/barycentric/areal/trilinear) coordinates for ternary diagrams for representing three quantities A, B, C whose sum is a constant
(which can be normalized to unity).

In a ternary plot, of EM energy the Electric field [E] and the Magnetic dipole [N -S] must renormalise to 1

A ternary diagram is simply a triangular coordinate system in which the 3 edges correspond to the axes.

Trilinear charts are commonly used for finding the result of mixing three components (such as gases, chemical compounds, soil, color, etc.) that add to 100% of a quantity.

Whilst the Pythagorean Theorem boasts a slightly greater economy of terms than the Eutrigon Theorem (Wayne Roberts 2003), the latter contains an important area not included in the former:
the area enclosed or swept out by the three points of the triangle in question

the area of any eutrigon is equal to the combined areas of the equilateral triangles on legs ' a ' and ' b ' minus the area of the equilateral triangle on its hypotenuse ' c '.

Eutrigons

are an important new class of triangle (mathematically defined by Wayne Roberts), as the analogue of the right-triangle in orthogonal (Cartesian) coordinate geometry

Kepler's Second Law of planetary motion

The orbit of every planet is an ellipse with the Sun at one of the two foci.

A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.

The algebraic form of the Eutrigon Theorem, (like the algebraic form of Pythagoras' Theorem), is proven to be special case of the Cosine Rule...

Tetryonic theory reveals the equilateral [square] energy geometry that reveals the 'harmonics at play' in physical laws such as the second law of Kepler, and in many other phenomena in physics, chemistry, cosmology, biochemistry and number theory thus providing the foundation for the mathematics of quantum mechanics

The Pythagoreans also established the foundations of number theory, with their investigations of triangular, square and also perfect numbers (numbers that are the sum of their divisors).

They discovered several new properties of square numbers, such as that the square of a number n is equal to the sum of the first n odd numbers (e.g. $1+3+5+7=16$).

Number theory

It has only been in recent centuries that mathematics has begun to explore the higher order irrational numbers

Tetryonics takes this investigation to new levels with the identification of equilateral geometries as the foundation of transcendental numbers and the physics of fields and particles in motion

What mathematics has failed to appreciate is the significance application of equilateral geometries to the 'square' numbers of physics and science in general

TETRYONICS

COUNTING POLYGONS

SQUARED energies in quantum mechanics are EQUILATERAL geometries

Square
area $=\mathbf{s}^{2}=[100]$

Circles

$=\mathrm{pi}{ }^{*}[5.642]^{2}$
$=100$

can be created by a number of planar geometries

For a long time it has been assumed by scientists (and mathematicians) that circular [and squared] geometries are the geometric foundation of all physics, leading to a serioulsy flawed model of particles and forces in quantum mechanics

Tetryonic theory now reveals that quantised equilateral angular momenta creates the foundational geometry of all the mass-Energy-Matter \& forces of physics

Equilateral
area $=\left(\frac{1}{2} * \mathbf{b}\right)^{*} h$

Triangles

b
h
[.5×15.197] $\times 13.160$
$=100$

Integers

The integers (from the Latin integer), literally "untouched", hence "whole" in Tetryonics it is the basis for the Planck charge quantum

$2 n-1$
 $[\mathrm{n}]+[\mathrm{n}-1]]$

Triangular numbered geometries are NOT equialteral geometries
$0,1,3,6,10,15,21,28,36,45,55, \ldots$

$\begin{array}{lllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
Equilateral energy quanta form a normal longitudinal distribution
Viewed as a subset of the real numbers, they are numbers that can be written without a fractional or decimal component

Bosons are a transverse measure of scalar energy momenta

ODD numbers

An odd number is an integer which is not a multiple of two.

1

3

5

7

9

11

An odd number, when divided by two, will result in a fraction

Tau radians

τ is a more'natural' radian system for geometric physics than π Tau $=2 \pi=360$ degree rotation about a point

π

historically defined as the ratio of a circle's circumference to its DIAMETER should be redefined in physics to

τ

the ratio of its circumference to its RADIUS
in doing so many of the $\pi / 2$ terms common to physics will re automatically rationalised and will better reflect the Tetryonic geometry of mass-ENERGY-Matter in motion

Photons are EVEN number quantums

Photons are a longitudinal measure of scalar energy momenta EVEN numbers
An integer that is not an odd number is an even number

If an even number is divided by two, the result is another whole number $\begin{array}{lllllllllllllllll}1 / 2 & 1 & 3 / 2 & 2 & 5 / 2 & \mathbf{3} & 7 / 2 & \mathbf{4} & 9 / 2 & \mathbf{4} & 7 / 2 & \mathbf{3} & 5 / 2 & \mathbf{2} & 3 / 2 & \mathbf{1} & 1 / 2\end{array}$ If an odd number is divided by two, the result is a fractional number

EM waves are comprised of EVEN numbered quanta

Triangular numbers

Historically, a triangular number counts quanta that can pack together to form an equilateral triangle $1,3,6,10,15,21,28,36,45,55, \ldots$.
this form of geometric counting of same charges over-complicated the simpler physical reality
$2 v-1$
$[[v]+[v-1]]$
Equilateral chords or quantum levels are ODD numbers
$1,3,5,7,9,11,13,15,17,19,21, \ldots$.

$\begin{array}{lllllllllllllllll}1 / 2 & 1 & 3 / 2 & 2 & 5 / 2 & 3 & 7 / 2 & 4 & 9 / 2 & 4 & 7 / 2 & 3 & 5 / 2 & 2 & 3 / 2 & 1 & 1 / 2\end{array}$

$\sum_{1}^{n}[2 n-1]$
Equilateral geometries form SQUARE numbered geometries
$1,4,9,16,25,49,64,81,100,121,144, \ldots$.

Triangular energy quanta form normal distributions

Squared numbers

A square number, sometimes also called a perfect square,
is the result of an integer multiplied by itself

Energy levels have SQUARE number quanta

In Tetryonics Square numbers produce equilateral geometries

Square roots

A square root of a number is a number that, when it is multiplied by itself (squared),
gives the first number again.

Root of positive one
$-i$ and $+i$

16

Square roots of negative numbers have a basis in physical reality

A whole number with a square root that is also a whole number is called a perfect square
in Tetryonic theory they are actually equilateral geometries

Real Numbers

In mathematics, a real number is a value that represents a quantity along a continuous line. The real numbers include all the rational numbers,
Quantum levels
$-n$

Basic Properties of nested scribed Equilateral Triangles

Given an equilateral triangle of side s

35
perimeter
$\sqrt{3 / 6} S$
in-radius
circum-radius

$\sqrt{3 / 4} S^{2}$
area
$\sqrt{\pi / 12} S^{2}$
in-circle area
circum-circle area
$\sqrt{\pi / 3} \mathrm{~S}^{2}$

Tetryonic [equilateral] geometry

An equilateral triangle is the most symmetrical triangle,
having 3 lines of reflection and rotational symmetry of order 3 about its center

Energy

Energy per spatial unit mass

Scribed equilateral geometries

reflect space-time's geometric relationship with charged mass-energy

The triangle of largest area of all those inscribed
in any given circle is equilateral

$$
m=\frac{E}{c^{2}} \quad \frac{\Omega}{c^{2}}=s
$$

Circumscribed Triangles

reflect Energy's relationship with Time

Positive Planck Charge

The perimiter of an equilateral triangle is

$$
p=3 a
$$

Inscribed circles

Negative Planck Charge

The radius of the circumscribed circle is

$$
R=\frac{\sqrt{3}}{3} a
$$

The equilateral triangle has the smallest area of all those circumscribed around a given circle

Circumscribed circles

By Euler's inequality, the equilateral triangle has the smallest ratio R / r of the circumradius to the inradius of any triangle: specifically, $R / r=2$

Charged mass-ENERGIES

Trigometric functions

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

The most familiar trigonometric functions are the sine, cosine, and tangent.
In the context of the standard unit circle with radius 1, where a triangle is formed by a ray originating at the origin and making some angle with the x-axis,
the SINE of the angle gives the length of the y-component (rise) of the triangle, the COSINE gives the length of the x-component (run), and
the TANGENT function gives the slope
(y-component divided by the x-component)

Standard trigometric functions must be carefully applied to measurements of equilateral Planck mass-energy geometries in scribed circular space-time co-ordinate systems

In most cases it is in fact easier to ignore the trigonomteric functions and math and simpy draw their related equilateral geometries

The roots of scribed equilateral triangles

Scalar equilateral energies map directly onto circular space-time co-ordinates
through their square root linear momentum
r
The ratio of the circumscribed circle of an equilateral triangle to its inscribed circle is $2: 1$
d

Equilateral triangles and scribed circles

Finite sequences and series have defined first and last terms,

$$
\sum a_{n}=a_{0}+a_{1}+a_{2}
$$

$\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\lim _{n \rightarrow+\infty}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}\right)$.
whereas infinite sequences and series continue indefinitely

The Basel problem is a famous problem in mathematical analysis with relevance to number theory, first posed by Pietro Mengoli in 1644 and solved by Leonhard Euler in 1735.

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{6}
$$

Tetryonics now provides a geometric solution to visualising and solving the Basel problem

$$
\zeta(2)=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6} \approx 1.645
$$

Tetryonic Infinite Series

equence of square numbers,
the result of adding all those terms together
[or their geometric inverse]

The entire sum of the series is equal to twice the size of the radius of the largest inscribed circle which is equal to the largest circle circumscribing the triangular series.

Irrational numbers

an irrational number cannot be represented as a simple fraction.
Irrational numbers are those real numbers that cannot be represented as terminating or repeating decimals
$\sin (x)=-$ square root of $(3) / 2$

Pythageras' theoreom
and irratienal numbers expressed in terms of right-angled triangles in Physics offer a 'half truth' regarding the equilateral geometry of Energy

Leibniz

Newton

Newton focused his work on linear momentum which he developed into his famous laws of motion

Newton and Leibniz disagreed about what the world is made of and how its physics shaped our scientific concepts of
force, energy, and momentum

Tetryonics reveals the physical relationships they both described mathematically as geometric properties of equilateral Planck energy momenta

Scalar Energy

$\mathrm{E}=\mathrm{mv}^{2}$

$\mathrm{p}=\mathrm{mv}$

Geometric Square Roots

1
In geometrical terms, the square root function maps the area of a square to its side length.

Square root of 1
$90^{\circ} \quad 90^{\circ}$
"In mathematics, as in any scientific research, we find two tendencies present. On the one hand, the tendency toward abstraction seeks to crystallize the logical relations inherent in the maze of material that is being studied, and to correlate the material in a systematic and orderly manner. On the other hand, the tendency toward intuitive understanding fosters a more immediate grasp of the objects one studies, a live rapport with them, so to speak, which stresses the concrete meaning of their relations"

Square root of 1

[^0]
Square Roots in Physics

In mathematics, a square root of a number a is a number [n] such that $[n] 2=x$, or, in other words, a number [n] whose square (the result of multiplying the number by itself, or $[n \times n]$) is x.

The Square roots of n

Historically, any number raised to the power of 2 has been modeled using a polygon--the square That's why we call raising a number to the second power "squaring the number."

[In physics square numbers are in fact equilateral geometries] The perfect squares are squares of whole numbers. Here are the first eight perfect squares

The Square root of Negative 1

Euler's Formula

Euler's formula is often considered to be the basis of the complex number system. In deriving this formula, Euler established a relationship between the trigonometric functions, sine and cosine, and e raised to a power
$e^{i x}=\cos (\mathbf{x})+i \sin (\mathbf{x})$
a mathematical description of EM-Energy waveforms
Positive fields are out of phase with Negative fields

Geometric means

geometric square root of positive one

In physics, the geometric mean of two superpositioned fields produces a vector square root Force

geometric square root of negative one

In Tetryonic geometry the geometric mean applies to positive \& negative fields.

Superpositioning

When two or more waves traverse the same space,
the net amplitude at each point is the sum of the amplitudes of the individual waves.

constructive interference

The lines of Force

Tetryonic Multiplication table
A multiplication table is a mathematical grid used to define a multiplication operation and its results

Historically Multiplication tables have been based on Square geometries

Rhombic Multiplication Tables

Photonic Root Tables

Square root median

Table read diagonally

Tetryonic multiplication table can take a number of geometric forms

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

Integer median

Table read from centre to outside edge then down

会 城 会 城 城 会众 会 会

Irrational Numbers

An irrational number is defined to be any number that is the part of the real number system that cannot be written as a complete ratio of two integers

One well known irrational number is π /

1,000

$$
10,000=10^{4}
$$

How much growth after x units of time (and 100\% continuous growth)
$e^{x}=\lim _{n \rightarrow \infty}(1+x / n)^{n}$,
GROWTH

Exponentials \& Logarithms

e and the Natural Log are inverse functions of each other:

Natural $\log (\mathrm{In})$ is the amount of TIME of continuous growth to reach a certain level
$\log (10,000)=4$

$\ln (x)$ lets us plug in continuous growth and get the time it would take.
$\ln (x)=\lim _{n \rightarrow \infty} n\left(x^{1 / n}-1\right)$.

Exponential growth

GEOMETRIC

3.141592654

Pi is the ratio between circumference and diameter shared by all circles.

It is a fundamental ratio inherent in all circles and therefore impacts any calculation of circumference, area, volume, and surface areas

Pi radians are equally important and show all quantised equilateral energy geometries are related to their scribed circles

$$
\text { growth }=e=\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{t}
$$

e represents the idea that all continually growing systems
are scaled versions of a common rate

GROWTH

2.718281828
e is the base rate of growth shared by all continually growing processes.
e lets you take a simple growth rate
(where all the change happens all at once at the end of a period of time - ie quantised growth)
e shows up whenever systems grow
exponentially and continuously.... radioactive decay, interest calculations and populations

quarks

e can be applied to the equilateral energy geometries of physical systems
leptons only where the rate of increase is a integer factor of a squared number

Nuclear Energy levels

The emission and absorption of bosons and Photons
within sub-atomic nuclei
Increase and decrease in integer amounts according to the charged Tetryonic topologies

Exponential energy levels

Radioactive decays follow exponential curves determined by the Tetryonic topology of the sub-atomic particle families

Proton Neutron
antiNeutron antiProton

$36 \pi\left[\varepsilon_{0} \mu_{0} \mu_{0}\right] \cdot[\underbrace{\text { EM Field }}_{\text {ElectroMagnetic }} \quad{ }_{\text {velocity }}^{\text {Planck quanta }}$

Series addition \& the Riemann Zeta Function

The second series addition of the Reimann Zeta function is where $x=2:(p i \wedge 2) / 6=1+1 / 2 \wedge 2+1 / 3 \wedge 2+1 / 4 \wedge 2+\ldots$ (the sum of the reciprocals of the squares)

$$
\zeta(s)=\sum_{n} \frac{1}{n^{s}}
$$

$$
\sum_{n=1}^{\infty} \frac{1}{n^{x}}
$$

$$
\zeta(2)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{6}
$$

$$
f(n)=1 / n^{2}
$$

In mathematics, the Riemann zeta function, is a prominent function of great significance in number theory. It is a named after German mathematician Bernhard Riemann. It is so important because of its relation to the distribution of prime numbers. It also has applications in other areas such as physics, probability theory, and applied statistics

The mystery of prime numbers
Question: which natural numbers are prime? how are they distributed among natural numbers?

Primes are basic building blocks for natural numbers:

- any natural number is a product of prime numbers - a prime number is only divisible by itself and by 1 : (it cannot be further simplified)

We don't know how to predict where the prime numbers are:
"Prime numbers grow like weeds among the natural numbers, seeming to obey no other law than that of chance but also exhibit stunning regularity" (Don Zagier, number theorist)

Adding the odd numbers in order produces the square numbers

SPECTRAL LINES
Primes can be modelled as Bosons
[ODD number energy momenta geometries]

Apart from 2, all primes are odd numbers;
the difference between two consecutive squares being odd every prime can be expressed as the difference between two squares

KEM ENERGIES

Primes can be expressed as Bosons [the difference of two squared energies]

$$
n^{2}-[n-1]^{2}
$$

$\begin{array}{ll}35 & 17 \\ 35 & 18\end{array}$
824
324

[22+21]

484 [$\left.22^{2}-21^{2}\right]$ [24+23] 4_{40}^{47}, [24+23] 4_{40}^{47}, 625

[27+26]

- 729 $729 \quad\left[27^{2}-27^{2}\right]$
[30+29] $[30+29]$
$[31+30]$
57 .

8543
43
44

all energy quanta create normal distributions

The Digital roots of Prime numbers

The digital root (also repeated digital sum) of a number is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Summing the dissimilar coloured equilateral triangles gives unity

$$
\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3
\end{array}
$$

1/3
1/3
1/3

Summing the dissimilar coloured equilateral triangles gives unity

The Basel Problem

The Basel problem is a famous problem in mathematical analysis with relevance to number theory, first posed by Pietro Mengoli in 1644 and solved by Leonhard Euler in 1735.

$$
\zeta(2)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{6} \approx 1.644934
$$

(1626 - June 7, 1686)

The Basel problem asks for the precise summation of the reciprocals of the squares of the natural numbers, i.e. the precise sum of the infinite series

$$
f(n)=1 / n^{2}
$$

Integrals of mass-energy
 is a means of finding scalar areas using summation and limits.

Integration is a micro adding of CONTINUOUS quantities

Integration is a special case of summation.

Integration is defined as the limit of a summation as the number of elements approches infinity while a part of their respective value approaches zero.

Summation is the finite sum of multiple, fixed values.

 n

The summation of equilateral energy momenta quanta with respect to their linear vector components

Integrating the energy quanta contained within equilateral charge geometry gives the variable Force required to acheive changes in motion
[Energy, work, acceleration]

[^1]

The Integral of the continuous area under the curve is the summation of an infinte number of disctrete rectangular measurements made to a specified limit

An integration isn't a simple summation, but the limit of a sequence of summations

All Planck energies are discrete equilateral geometries

mass is the surface integral of EM energy geometries per unit of time

$$
E=m v^{2}
$$

integral calculus

Leibniz's vis viva (Latin for living force) is mv 2 ,
 [2x kinetic energy]

(July 1, 1646 - November 14, 1716)

The founders of calculus thought of the integral as an infinite sum of rectangles of infinitesimal width

"The calculus of infinitesimals"

The fundamental theorem of calculus
simply states that the sum of infinitesimal changes in a quantity over time adds up to the net change in the quantity.

linear momentum is the square root vector force of the scalar energy required to do a set amount of work

Leilbnizz scalar energies

$\mathrm{E}=\mathrm{mv}^{2}$

mass-energy momenta relationship
square root equilateral energy is linear momentum

Planck quanta and their vector linear momentum lie at 90 degrees to the angle use in the graphs of motion in calculus

Newton
linear momentum
$\mathrm{F}=\mathrm{ma}$
mass is a scalar constant relating Force to acceleration
$\mathrm{F}=\mathrm{m} \frac{\Delta v}{\Delta t}$

Differentiation

Differentiation is concerned with things like speeds and accelerations, slopes and curves etc.

An increase in a force opposing an object's vector velocity results in DECCELERATION

An increase in a force in line with an object's vector velocity results in ACCELERATION

A scalar measure of Forces acting on physical systems resulting in changes to their rate of motion

$$
\begin{aligned}
& v=\frac{\Delta d}{\Delta t} \\
& =\mathrm{m} / \mathrm{s} \\
& F=m a \\
& \text { In physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, } \\
& \text { and the derivative of velocity with respect to time is acceleration. } \\
& \mathrm{a}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}} \\
& =\mathrm{m} / \mathrm{s}^{2} \\
& \sum \mathbf{F}=\frac{\mathrm{d} \mathbf{p}}{\mathrm{~d} t}=m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}+\mathbf{v} \frac{\mathrm{d} m}{\mathrm{~d} t} \\
& \text { Newton's second law of motion states that the derivative of the momentum of a body equals the force applied to the body }
\end{aligned}
$$

Visualising the geometric half-truths of relativistic physics

The source of all the physical relationships of mass-energy momenta and the constants in Physics is the Equilateral Triangle (and all texts must be corrected)

Energy geometries within Physics including Special Relativity with its Lorentz corrections have historically been incorrectly illustrated through the geometry of right angled triangles

Physics is geometry, one cannot be separated from the other

$$
E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}
$$

Generalizing, we see that the square of the total energy, mass, or distance in spacetime is the sum of the components squared.

We can see an origin of distance in spacetime relating to velocity in pc in which Energy is subject to Lorentz corrections [v/c]

$$
E=p c
$$

Additionally, EM mass can be directly related tot the Energy content of a body by the velocity of Energy

$$
E=m c^{2}
$$

Velocity

In physics, velocity is the measurement of the rate and direction of change in the position of an object.

\mathbf{V} Velocity $\frac{\mathrm{M}}{\mathrm{S}}$

It is a vector physical quantity; both magnitude and direction are required to define it.
The scalar absolute value (magnitude) of velocity is speed, a quantity that is measured in metres per second (m / s or $\mathrm{ms}-1$) when using the SI (metric) system.

$\frac{17}{s}$

Speed is the scalar value of the Distance traveled per unit of TIme

$$
\overline{\mathbf{v}}=\frac{\Delta \mathbf{x}}{\Delta t}
$$

Velocity is the vector value of the Distance traveled per unit of Time

$$
\frac{\vec{n}}{\mathrm{~S}}
$$

Velocity squared is the scalar value of the Distance traveled per unit of Time squared (Energy of a given spatial volume)

$\frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}$

All divergent Energy possesses a vector direction and an associated scalar area whose energy content is quantised

Velocity squared
$\frac{\mathrm{m}^{2}}{\mathrm{~S}^{2}}$

Acceleration

In physics, acceleration is the rate of change of velocity over time [dt]
In one dimension, acceleration is the rate at which something speeds up or slows down.
However, since velocity is a vector, acceleration describes the rate of change of both the magnitude and the direction of velocity.

Acceleration has the dimensions [Length]/[Time Squared]
In SI units, acceleration is measured in meters per second squared $\left(\mathrm{m} / \mathrm{s}^{\wedge} 2\right)$.

$$
a=\frac{\Delta y}{\Delta x}=\frac{\Delta v}{\Delta t} .
$$

In classical mechanics, for a body with constant mass, the acceleration of the body is proportional to the net force acting on it (Newton's second law)

$$
\mathrm{F}=\mathrm{ma} \longrightarrow \mathrm{a}=\mathrm{F} / \mathrm{m}
$$

$\operatorname{kg}_{\frac{1}{s^{t}}}$

Additionally, for a mass with constant velocity,
(ie in an inertial frame)
the energy of motion is expressed as its momentum (acceleration causes changes in Energy-momentum)

$$
\mathbf{p}=\operatorname{kg} \frac{\mathrm{m}}{\mathrm{~s}}
$$

Energy-momentum relationship

Quantum Mechanics

$$
h=\frac{E}{V^{2}}
$$

Quantised energy
equilateral momenta

$h v^{2}$

The total number of equilateral Planck quanta [quantised mass-energy momenta] is directly related to the square of its linear momentum [mass-velocity]

Newtonian physics

Quantised Energy momenta is relared to Scallar mass energy momenta through
the equillaterall geometryy of Plancle's constant

$$
m=\frac{E}{v^{2}}
$$

Scalar energy linear momentum
pv

$$
m \Omega v^{2}=\Sigma=m v^{2}
$$

$$
E=m c^{2}
$$

The total intrinsic momenta of all energy waveforms is the sum of their constituent Quantised Angular momenta (mass-energy momenta)

$$
M_{0}=m / c^{2}
$$

quantised moment of inertia

Inertial resistance to Force

Inertia is the resistance of any physical object to a change in its state of motion.

Changes to mass-velocity produces a change in an object's Kinetic Energies

$$
\mathrm{KEM}=M \mathrm{v}^{2}
$$

> Matter in motion has Kinetic Energies in addition to invariant rest mass-Energy
KE = RE - rest Matter

The 'inductive resistance' of Charge quanta fields to changes in their mass-energy momenta content
is what we term Inertia

Any change to an object's velocity results in a corresponding change to its mass-Energy momenta which is reflected by its inertia

$$
\mathrm{p}^{2}=\mathrm{E}=\mathrm{mv}^{2}
$$

Inertial mass cam be related to Charge through inductive Planck quanta

quantised moment of inertia

Quantised Angular momentum

As it is a physical [equilateral] geometry QAM is conservative in any system where there are no external Forces and serves as the foundational geometric source for all the conservation laws of physics

Angular momentum is sometimes described as the rotational analog of linear momentum, in Tetryonics it is revealed to be the equilateral geometry of quantised mass-energy momenta within any defined space-time co-ordinate system

A major re-definition of quantised angular momentum in physics is revealed

classical rotational angular momentum

Quantised Angular momentum

In quantum mechanics, angular momentum is quantised - that is, it cannot vary continuously, but only in ODD number "quantum steps" between the allowed SQUARE nuclear Energy levels

In physics, angular momentum, moment of momentum, or rotational momentum is a conserved vector quantity that can be used to describe the overall state of a physical system.

When applied to specific mass-Energy-Matter systems QAM reveals the true quantum geometry and
nature of Energy in our universe

mass x QAM

Planck's Constant

Normally viewed as an expression of rotational momentum Quantised Angular Momentum [QAM] is in fact a result of the equilateral geometric quantization of mass-energy

Charged geometries
 All charge geometries are nett divergent

Divergent
energy momenta
1

3

6

10

15

21

28

36

Convergent energy momenta

[^2]
Renormalisation

Renormalization was first developed in quantum electrodynamics (QED) to make sense of infinite integrals in perturbation theory The problem of infinities first arose in the classical electrodynamics of point particles in the19th and later in the calculation of Gravitational fields in General Relativity in the early 20th century.

2D space [c^{2}]

The adjective Cartesian refers to the French mathematician and philosopher René Descartes who developed the coordinate system in 1637

Since then many other coordinate systems have been developed such as the polar coordinates for the plane, and the spherical and cylindrical coordinates for three-dimensional space.

Cartesian coordinates are the foundation of analytic geometry, and provide enlightening geometric interpretations for many other branches of mathematics, such as linear algebra, complex analysis, differential geometry, multivariate calculus, group theory, and more

Mapping 3D spaces using Recti-linear co-ordinates

Cartesian coordinates can be defined as the positions of the perpendicular projections of a point onto the two or more axes, expressed as signed distances from the origin.

3D Cartesian co-ordinate [c^{3}] systems are distinct from spherical co-ordinate [c^{4}] systems

Polar co-ordinates

In mathematics, the polar coordinate system is a two-dimensional co-ordinate system in which each point on a plane is determined by a distance from a fixed point and an angle from a fixed direction.

In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the co-ordinate lines may be curved.

Action Dynamics

Curvilinear co-ordinates may be derived from a set of rectilinear Cartesian coordinates by using a locally invertible transformation that maps one point to another in both systems

Metric Tensors

Gravitational acceleration

Polar or curvilinear co-ordinate systems are used extensively by Einstein in his theory of General Relavtivity

Reimannian curved space-time

Co-ordinate transformations

There are many different possible coordinate systems for describing geometrical figures and they can all be related to one another.
Such relations are described by coordinate transformations which give formulas for the coordinates in one system in terms of the coordinates in another system

$\boldsymbol{\operatorname { t a n }} \theta=\frac{\text { opposite }}{\text { adjacent }}$
$=\tan ^{-1}(5 / 12)$
$=22.619$

Converting between Polar and Cartesian coordinates

$$
\begin{aligned}
\mathbf{r}^{2} & =12^{2}+5^{2} \\
& =\sqrt{ } 169 \\
& =13
\end{aligned}
$$

Cubic

Spatial co-ordinate systems

Spacetime is any mathematical co-ordinate system or model that combines space and time into a single continuum.

Spacetime is usually interpreted with space as being three-dimensional with time playing the role of a fourth dimension that is different from the spatial dimensions.

From a Euclidean space perspective, the universe has three spatial dimensions and one dimension of time [reflected by quantised angular momentum].

> Tetryonics maps spatial co-ordinates through the momenta vectors of equilateral Energy

Cartesian Space-Time

Mapping equilateral Energy geometries onto recti or curvi-linear spatial co-ordinate systems introduces mathematical complexity
to a otherwise simplistic geometry for all EM mass-Energy-Matter interactions

EM mass-ENERGY momenta are equilateral geometries

Spherical

seconds ${ }^{2}$

> Tetryonic Space-Time

In physics spatial co-ordinates to date have been based on Cartesian co-ordinates when in fact Energy momenta follow a Tri-Linear co-ordinate geometry

Planar mass-energy geometries have no z-components

Differentiation between 2D mass-energy \& 3D Matter

 is key to extending our understanding of physicsMatter topologies have z-components
Tetryonic co-ordinate systems

M

3D Matter topologies

Neutron

Quantum probability distributions
The equilateral geometry and distribution of quantised Energy momenta provides the basis for all statistical probabilities in Quantum mechanics, thermodynamic \& information entropy - including a solution to Helsenberg's Uncertainty Principle thus paving the way forward for a new understanding, and manipulation of physical phenomena at the quantum level

Normal distributions are extremely important in statistics, and are often used in the natural and social sciences for real-valued random variables whose distributions are not known

Quantum Probability Distributions

The normal distribution is a probability distribution.
It is also called Gaussian distribution because it was discovered by Carl Friedrich Gauss.

EM waveforms

All EM waveforms can be measured by either their Transverse EM masses [Bosons] or their Longitudinal EM masses [Photons]

BOSONS

$$
\frac{m \pi}{c}\left[\left[m v^{2} v^{2}\right]\right.
$$

Quantum Energy distributions

Transverse Boson quanta

.

Longitudinal Photon Frequency

Normal Distributions

Pierre de Fermat

Pierre de Fermat is given credit for early developments that led to infinitesimal calculus.
all ODD numbers are

$$
a^{2}-b^{2}=[a-b] \cdot[a+b]
$$

the difference of two squares

The Gaussian distribution sometimes informally called the bell curve.

A bell shaped curve defines the standard normal distribution, in which the probability of observing a point is greatest near the average, and declines rapidly as one moves away from the mean.

Leonhard Euler developed a formula which links complex exponentiation with trigonometric functions

$$
e^{i \pi}=-1
$$

In probability theory, the normal (or Gaussian) distribution is a continuous probability distribution that has a bell-shaped probability density function, known as the Gaussian function

Fundamental theorem of Energy momenta

A nth level scalar energy momenta waveform has exactly n linear momentum in unit circle co-ordinate systems (with Longitudinal and Transverse equilateral Planck waveforms being orthogonal to each other)

Matrices are a key tool in linear algebra.
One use of matrices is to represent linear transformations, which are higher-dimensional analogs of linear functions of the form $f(x)=c x$, where c is a constant; matrix multiplication corresponds to composition of linear transformations.

Matrices

Further developing equilateral Matrices and tensor mathematics to reflect the 2 D geometry of EM, KEM and GEM quantum fields, along with the geometric quantisation of mass-energiy momenta and their energy distributions allows for field interactions
to be accurately visualised and modelled

Tensors are geometric entities introduced into mathematics and physics to extend the notion of scalars, geometric vectors, and matrices to increasingly higher orders.
Modifying Square matrices to reflect the equialteral geometries of Tetryonic fields allows for the accurate geometric modelling of all Scalar \& Vector fields along with their varied intrinsic quantum energies and physical properties
momenta
(a property of Energy)
is converative

Energy momenta Tensors

$$
P_{M} \longrightarrow(E, p 1, p 2, p 3, p 4) .
$$

All standing-wave Matter topologies can be modelled using its Tetryonic charge energy momenta Tensors
with an additional Kinetic EM energy-momenta tensor required for Matter in motion

$$
\mathrm{P}_{\mathrm{KEM}} \longrightarrow(\mathrm{E}, \mathrm{p} 5) .
$$

Matter

 (a geometric property) is NOT conservative
$2 \mathrm{D}+1$ [SR] mass-energy momenta can be folded into 3D+1 [GR] Matter that can be modelled using 4 Energy-momenta tensors
 Matter
$E=\sum_{\text {all fascia }} \mathrm{E}$
Energy of a massive particle is the total of all Planck quanta (compton frequency) in a 3D geometry

$\overrightarrow{\mathrm{P}}=\sum_{\text {all fascia }} \overrightarrow{\mathrm{O}}$
Total Momentum
is the total of all quanta
linear Momenta in a 3D particle

Negative standing-wave Matter

Relativistic Matter in motion

Inertial mass is the total of all inertia in a 3D particle

Photons have null energy-momentum tensors

Note that both 2D mass energies [Special Relativity] and 3D Matter [General Relativity] have distinct Energy momenta

It is the 3D Tetrahedral topologies that provides a definative basis for Matter

Tetryonic Energy momenta tensors should not be confused with Four vector tensors which map energy-momenta vectors in 3D spatial[cartesian] co-ordinate systems

Relativistic Matter in motion

C
Linear correction factor

Wavelength contraction

Relativistic Lorentz correction factor

' c ' is the maximum velocity acheivable through the electrical acceleration of particles is NOT the maximum velocity possible for Matter in motion

Lorentz factors are LINEAR and SCALAR velocity related corrections to the relativistic mass-energy momenta content of any physical system accelerated by EM Forces

Scalar correction factor

$$
\beta^{2}=\left[\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}\right]
$$

physical system accele

Relativistic momentum

Lorentz corrections

Relativistic mass-energy
$\frac{\Delta h v}{c^{2}}$

Equilateral energies

Any measurements of mass without a Space-Time co-ordinate system

are measurements of Energy

Electromagnetic mass
2D mass-energy is the surface integral of 3D Matter

$\begin{array}{lllll}1 / 2 & 1 & 3 / 2 & 3 / 2 & 1 / 2\end{array}$

c^{2}

C^{2}
${ }^{2}$
mass-less particles
is a physical misnomer
All measurements of energy in spatial co-ordinate systems are measurements of mass

$$
\begin{aligned}
& \text { trahedral standing-wave topologies } \\
& \text { forms the basis of Matter }
\end{aligned}
$$

c^{4}

Standing-wave Matter

Matter is a higher order 3D topology created by standing wave mass-energies

Only
mass-ENERGIES contained in the tetryonic fascia of standing-wave topologies contribute to weight

Periodic element nuclei

$\cdots \dot{c}^{4}$

${ }^{4}$

${ }^{4} 4$

${ }^{4}$

\dot{c}^{4}

ALL periodic elements are comprised of n level deuterium nuclei

0

n1 - Neutral Tetryon Templates

18
n2 - Charged Tetryon Templates

n2 - Neutral Tetryon Templates

10 n3 - Neutral Tetryon Templates

n4-Charged Tetryon Templates

n4-Neutral Tetryon Templates

n5 - Charged Tetryon Templates

n5 - Neutral Tetryon Templates


```
                n6 - Neutral Tetryon Templates
```


 n7-Charged Tetryon Templates


```
n7 - Neutral Tetryon Templates
```


n8 - Neutral Tetryon Templates

Each shell consists of one or more subshells, and each subshell consists of one or more atomic orbitals.

Periodic element geometries

An electron shell may be thought of as an orbit followed by electrons around an atom's nucleus.
The closest shell to the nucleus is called the " 1 shell" (also called "K shell"), followed by the
" 2 shell" (or " L shell"), then the " 3 shell" (or " M shell"), and so on further and further from the nucleus. The shell letters $\mathrm{K}, \mathrm{L}, \mathrm{M}, \ldots$ are alphabetical

Each shell can contain only an integer number of whole deuterium nucle [Proton, Neutron \& electron]

Periodic Harmonic motions

$$
x=A \cos (\omega t+\varphi)
$$

Circular motion

Much of the math in of modern physics is predicated on the assumption that π [where it appears] is related to the properties of a circle

Simple harmonic motion can be visualized as the projection of uniform circular motion onto one axis

Principal Quantum Numbers
circular harmonic motion

Circular motions describe the motion of a body with a changing velocity vector [the result of an acceleration force].

$F=-k x$
Linear motion

simple harmonic motion

Nuclei per shell in elements follows a'periodic summation rule' that is reflective of photonic energies

$930.947 \mathrm{MeV}+\quad 13.525 \mathrm{ev}+\quad 496.519 \mathrm{keV}$

Mapping Planck mass-energy contributions to elementary Matter and isotopes

polar aufbau

Identifying electron rest Matter topologies as velocity invariant we can re-arrange the component Planck mass-energy geometry formulation of periodic elements to

$$
M\left[\underset{\text { Deuteron rest mass }}{72\left[\mathbf{v}^{2}\right]} \underset{\text { Spectral lines }}{v} \quad+\quad 1 \underset{\text { electron rest mass }}{\mathbf{e}}\right]
$$

reveal a quadratic formulation for all Z numbers

STEP ONE
Periodic summation follows the atomic shell electron config

THe LHS of the notation determine the number of nuclei in each atomic shell, from the periodic mass-energy levels for atoms, and the RHS follows the aufbau building principle to determine the rest mass-Matter of any specific element

Aufbau

Each periodic element is made of Z [n^{2} energy] deuterium nuclei

STEP TWO
Periodic elements build up following the aufbau sequence

$p\rangle \mathrm{R}=2$	$\begin{gathered} 2 \text { nuclei } \\ \text { [74.496 ea] } \end{gathered}$	120	Unbinilium
$p \sum Q=8$	$\begin{gathered} + \\ 8 \text { nuclei } \\ {[69,780 \text { ea }]} \\ + \end{gathered}$	118	Ununoctium
$p \sum p=18$	$\begin{gathered} 18 \text { nuclei } \\ {[65,232 \text { ea] }} \end{gathered}$	110	Darmstadtium
$\mathrm{P} \sum \mathrm{O}=32$	$\underset{\substack{+32 \text { nuclei } \\[60,852 \text { ea] }}}{ }$	92	Uranium
$\mathrm{P} \sum \mathrm{N}=32$	$\begin{gathered} + \\ 32 \text { nuclei } \\ {[56,640 \text { ea }]} \end{gathered}$	60	Neodymuim
$\mathrm{P} \boldsymbol{M} \mathrm{M}=18$	$\begin{gathered} 18 \text { nuclel } \\ {[52,596 \text { eal }} \end{gathered}$	28	Argon
$P \sum L=8$	$\begin{gathered} 8 \text { nuclei } \\ {[48,720 \text { ea }]} \\ + \end{gathered}$	10	Neon
$\mathrm{P} \sum \mathrm{K}=2$	$\begin{gathered} 2 \text { nuclei } \\ {[45,012 \text { ea] }} \end{gathered}$	2	Helium
		0	Hydrogen

Proton - Neutron Curve

The graph below is a plot of neutron number against proton number. It is used as rule to determine which nuclei are stable or unstable.

Historically, Proton-electron numbers are viewed as being equivalent in neutral elementary matter with the excess molar mass measured being the result of 'excess or extra' Neutrons in the atom

Atomic Nuclei Numbers

All periodic elements have an EQUAL number of Protons, Neutrons \& Electrons with their molar mass-Matter being determined by their quantum level mass-energies

Tetryonic modelling of the charged mass-ENERGY-Matter topologies of elementary atoms and the nuclei that comprise them, reveals a DIRECT LINEAR relationship for the number of Protons-electrons-Neutrons in all periodic elements and nuclear isotopes

Planck mass-energy contributions to elementary Matter and isotopes

All elements are comprised of n level Duetrium nuclei

The atomic shell energy levels of Deuterium nuclei in elements

Determines the spectral line [KEM field energies] of electrons bound to them

Baryons	KEM fields	electrons	$2 \mathrm{H}^{+}$

Elemental mass-Matter [in MeV]

The relativistic rest mass-energy-Matter of all periodic elements
is the sum of the mass-energies of all atomic nuclei and spectral lines that comprise its mass-Matter topology as measured in any spatial co-ordinate system per unit of time
[1.2e20]]

e
the rest mass-Matter of bound photo-electrons is velocity invariant

Element numbers

120 Unbinilium
119 Ununennium
118 Ununoctium
87 Francium
112 Copernicium
55 Caesium
102 Nobelium
37 Rubidium
70 Ytterbuim
19 Potassium
30 Tinc
11 Sodium
10 Neon
3 Lithium
2 Helium
1 Deuterium
Hydrogen 0

Periodic mass-ENERGY-Matter

Following periodic summation rules for shell filling n[1-8] quantum energy deuterium nuclei combine to form elementary Matter

The measured weight of Matter in gravitational fields is the result of planar mass-energies in tetryonic standing-wave geometries

The periodicity of all the elements, along with their exact molar rest mass-energies and quantum wavefunctions can be described with Tetryonic geometries

lonisation energies

Spectral line differentials

$$
\Delta h v=\Delta M v=\Delta p \quad \frac{1}{\lambda}=\frac{R_{H}}{h c}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

changes to energy momenta
accelerate photo-electrons

Ryberg's formula is a mathematical description of Tetryonic energy geometry

\& produces spectral lines

Ryberg's constant reflects the changing energy momentum of a transitioning electron

$$
M^{2}=K E M=h c R
$$

All of the transitions of photo-electrons bound to Hydrogen atoms can now be revealed in the fractional geometry
of KEM field energies

KEM field energies

Fermat's method of Factoring
 also known as 'the difference of two squares' is used to factorise large numbers

Fermat knew that every odd number could be written as the difference of two squares or as revealed geometrically through Tetryonic theory's equilateral geometry, every 'SQUARE' number is the sequential sum of ODD numbers

Fractions

In quantum mechanics fractions appear in quantum steps as a result of the equilateral geometry of Planck energy momenta

Tetryonic geometry explains the fractional mathematics of Rydberg's formula

Lyman spectral transitions

Balmer spectral transitions

$$
\Delta h v=\underset{\substack{\text { KEM } \\ 3 \\ \text { zecel }}}{ }=h \mathrm{cR}
$$

uantum level jump

Paschen spectral transitions

$\Delta M v^{2}$

Brackett spectral transitions

$$
\Delta h v=\underset{0.855 \mathrm{cv}}{\mathrm{~K}}=h \mathrm{cR}
$$

$\Delta \mathrm{Mv}^{2}$

Pfund spectral transitions

$$
\Delta h v=\underset{\substack{\text { EEsfey }}}{ }=h c R
$$

$\Delta \mathrm{Mv}^{2}$

Humphreys spectral transitions

$\Delta \mathrm{Mv}^{2}$

Un-named spectral transition

$$
\Delta h v=\underset{0.276 \mathrm{ev}}{\mathrm{KEM}}=h \mathrm{cR}
$$

$\Delta \mathrm{Mv}^{2}$

eigteenths

Eighteenths

Twenty-fourths

Fractionals and fractals

White light [EM radiation] is comprised of many superpositioned frequencies

Fractal antennas are tuned to specific wavelength-frequencies to match the equilateral geometry of photons

Thirty-seconds

Polygons

and Angles

deg

rad

Triangular dissection of an equilateral triangle

is a way of dividing up a original triangle into smaller equilateral triangles,
such that none of the smaller triangles overlap

\triangle

lowest order perfect equilateral triangle dissected by equilateral triangles

lowest order perfect dissected equilateral triangle, an isomer of the first

Golden mean Spirals

Golden Mean Spiral - This spiral is derived via the golden rectangle, a unique rectangle which has the golden ratio. This form is found everywhere in nature: the Nautilus Shell, the face of a Sunflower, fingerprints, our DNA, and the shape of the Milky Way

The convergence of the continued fractions

Continued fractions and the Fibonacci sequence
$0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots$

$$
1+\frac{1}{1+} \frac{1}{1+} \cdots
$$

are:

$$
\frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}, \frac{144}{89}, \frac{233}{144}, \frac{377}{233}, \frac{610}{377},
$$

The Golden Ratio (Golden Mean, Golden Section) is defined mathematically as:

$$
\varphi=\frac{1+\sqrt{5}}{2}=1.6180339887 \ldots
$$

Koch fractal Curve

Niels Fabian Helge von Koch (January 25, 1870 - March 11, 1924) was a Swedish mathematician who gave his name to one of the earliest fractal curves ever known

He described the Koch curve, or Koch snowflakes as it popularly known, in a 1904 paper entitled "On a continuous curve without tangents constructible from elementary geometry"

Von Koch wrote several papers on number theory
One of his results was a 1901 theorem proving that the Riemann hypothesis is equivalent to a strengthened form of the prime number theorem.

Three Koch curves form the snowflake.

$$
a=\frac{1}{2}+\frac{i}{\sqrt{12}}
$$

The Koch curve is a special case of the Cesaro curve where:

which is in turn a special case of the de Rham curve.

The Koch snowflake (or Koch star) is a mathematical curve and one of the earliest fractal curves to have been described.

Actually Koch described what is now known as the Koch curve which is the same as the now popular snowflake, except it starts with a line segment instead of an equilateral triangle.

Koch snowflake

space-time

$\frac{1351}{780}>\sqrt{3}>\frac{265}{153}$.

Flower of Life

The Flower of Life is a name for a geometrical figure composed of multiple evenly-spaced, overlapping circles.

Unit circles - SINE WAVES - Photons

Magnetic waveforms are 90 degrees out of phase with Electric waveforms

Boson distributions in monochromatic EM waves

Probability distributions of monochromatic EM waves

Wave interference patterns

The double-slit experiment, sometimes called Young's experiment.
is a demonstration that matter and energy can display characteristics of both waves and particles, and demonstrates the fundamentally probabilistic nature of quantum mechanical phenomena and Establishes the quantum interference principle known as wave-particle duality

In the basic version of the experiment, a conerent light source such as a laser beamt iluminates a thin plate pierced by two parallet slits, and the light passing through the slits is observed on a screen behind the plate. The wave nature of light causes the light waves passing through the two slits to interfere. producing bright and dark bands on the screen - a result that would not be expected if light consisted strictly of particles. However. on the screen. the light is always found to be absorbed as though it were composed of discrete particles or photons.

Matter particles are stopped by the barrier but the [K]EM wave passes through both slits and is diffracted by them producing weaker EM waves that then superposition with

If one slit is observed for the passage of the electron in order to determine its physical state then the its KEM field wave will be absorbed by the detector resulting in only one wave remaining, enforcing a classical particle outcome

Quantum computing via EM wave super-positioning

BY superpositioning two beams of EM radiation the resultant 'colours' will perform quantum level computations that can be read via the resultant interference patterns produced

destructive interference
subtractive out-of-phase EM waves

Out of phase

The lines of Force
constructive interference
additive in-phase EM waves
In phase

Various basic operations, such as ADDITION, SUBTRACTION and SQUARE ROOTS etc are all easily computed using EM wave super-positioning

Quantum Cryptography

If the numerical sequences were applied to amplitude modulation their non-repeating numerical sequences would appear
to be purely random noise

Using Tetryonic geometry advanced non-repeating cyphers of any complexity can be easily developed

The level of encryption can be easily increased (without limit)
by increasing the dimensions of the cypher geometry
eg: number of quanta 2D vs 3D geometries

Quantum Computing

The Proton/Neutron geometries of atomic nuclei can be built at the quantum scale to create an atomic nuclei that can operate as a Opto-memory-transistive computing element, many elements can then be combined in lattices to create super computers no larger than bacterium

Spin UP

1

Energy can be gated through individual nuclei using the centre Baryon as the base transistor element, in turn effecting the energies of bound photo-electrons

photo-electronic transitions can be used to directly recieve or emit memory states through the absorption and emission
of spectral photons of specific energy momenta

Scalar mass-energies

Photons
C^{2}

Quantum distributions

Photon Distributions
C^{2}
$\frac{\text { EM mass }}{\mathrm{C}^{2}}$ mass

2D mass

$$
\frac{\prod^{\text {EM mass }}}{c^{2}}\left[\prod_{\text {mass }}^{\text {Planck quanta }} \underset{\text { velocity }}{2}\right]
$$

Measure of planar energies
in a $n \pi$ radiant wave geometry [per second]

ENERGY

$$
\mathrm{n} \pi\left[\left[\mathrm{~m}_{\mathrm{moneras}} \mathrm{~V}^{2}\right]\right]
$$

Equilateral energy momenta
has a mass equivalence
per unit of Time

c^{2} is the radial geometry created by radiant energy
in 1 second

Planck Constant
6.629432672 e-34 J.s

3D Matter

$$
\frac{T \pi}{c^{c}}\left[\left[m^{2} \Omega v^{2}\right]\right.
$$

Measure of mass-energy
in a $4 n \pi$ standing wave topology [per second squared]

c^{4}
seconds squared
$7.376238634 \mathrm{e}-51 \mathrm{~kg}$
Matter quantum
2.9504955454 e-50 kg

Dlanck's constant - the quantum of Action

all ideal quantum inductive loops resist changes to their energy levels

INERTIAL mass
all equilateral energy momenta produce square root vector Forces
 Quantised angular momentum is equilateral geometry The two sides of Planck's Constant

The square root of all Energy is linear momentum

Equilateral

energy quanta per second
mass

Quantised

 angular momenta per second time
대AREE

bosons
tetryons
EM fields
quarks
leptons

Baryons

Vatter Topologies

Electric fields

MAES
 ENEREY
 MATTER

All squared energies have equilateral geometries

Clean, limitless Energy

The geometric field equation of mass-ENERGY-Matter

Unifying Science and Religion
charged Planck quanta

Tetryonic Theory

All EM mass, energy momenta \& Matter can be measured and geometrised with respect to equilateral Quantised Angular Momenta

Total Relativistic energies
$\mathrm{n} \pi\left[\left[\operatorname{man}_{\text {mass }}^{\text {Planck quarte }} \mathrm{ve}^{2}\right]\right.$

$$
\frac{\text { odd }_{\text {Oosons }} \pi}{\mathrm{c}^{2}}\left[\operatorname{mon}_{\text {mass }}^{\text {Planck }} \Omega \mathrm{V}^{2}\right]
$$

Quantumn Mechanics
standing-wave mass-Matter

Quantum Chemisitry

Quantum Cosmology
$\left.\frac{C}{c^{4}}\left[m \Omega^{2}\right]\right]$
3D standing-wave mass/Matter topologies

The application of equilateral QAM geometries covers all of the Physical disciplines

2D radiant mass-energy geometries

Tetryonic Geometrics

The equilateral geometry underpinning the mathematics of Physics

[^0]: "As to geometry, in particular, the abstract tendency has here led to the magnificent systematic theories of Algebraic Geometry, of Riemannian Geometry, and of Topology, these theories make extensive use of abstract reasoning and symbolic calculation in the sense of algebra.

 Notwithstanding this, it is still as true today as it ever was that intuitive understanding plays a major role in geometry.
 And such concrete intuition is of great value not only for the research worker, but also for anyone who wishes to study and appreciate the results of research in geometry"

[^1]: Summation is a macro adding of DISCRETE quantities

[^2]: All charge geometries are comprised of finite equilateral energy momenta quanta

